2,3-二磷酸甘油类似物的合成及功能评价研究进展

姚菀腾, 尹紫悦, 郭茜文, 李文斌, 王荣

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (18) : 1671-1675.

PDF(909 KB)
PDF(909 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (18) : 1671-1675. DOI: 10.11669/cpj.2023.18.007
综述

2,3-二磷酸甘油类似物的合成及功能评价研究进展

  • 姚菀腾1,2, 尹紫悦1, 郭茜文1, 李文斌1*, 王荣1,2*
作者信息 +

Advances in Synthesis and Functional Evaluation of Glycerol 2, 3-diphosphate Analogues

  • YAO Wanteng1,2, YIN Ziyue1, GUO Qianwen1, LI Wenbin1*, WANG Rong1,2*
Author information +
文章历史 +

摘要

2,3-二磷酸甘油(2,3-DPG)是血红蛋白氧亲和力的变构调节剂之一,它能与脱氧态血红蛋白(T态)结合,降低其对氧气的亲和力,增加血红蛋白在肌肉等组织中的释氧量,对维持机体缺氧有不可或缺的作用。而2,3-DPG由于透膜性较差,通过外源给药的方式起到的效果极为有限,设计可透膜的血红蛋白变构剂可为抗缺氧药物研究提供新的途径。本研究报道了2,3-DPG的作用方式、2,3-DPG类似物的研究进展及相关功能表征方法,为合成新的2,3-DPG类似物提供新的思路。

Abstract

Glycerol 2, 3-diphosphate (2,3-DPG) is one of the allosteric regulators of oxygen affinity of hemoglobin. It can combine with deoxygenated hemoglobin (T-state), reduce its affinity for oxygen, increase the oxygen release of hemoglobin in muscles and other tissues, and play an indispensable role in maintaining hypoxia. However, the effect of exogenous administration of 2, 3-DPG is extremely limited due to its poor membrane permeability. The design of membrane permeable hemoglobin allosteric agent can provide a new way for the study of anti-hypoxia drugs. This article reviews the action mode of 2,3-DPG, the research progress of 2,3-DPG analogues and related functional characterization methods to provide new ideas for synthesis of novel 2,3-DPG analogues.

关键词

2,3-二磷酸甘油酸 / 血红蛋白 / 变构剂 / 亲脂性化合物 / 高原缺氧

Key words

glycerol 2, 3-diphosphate / hemoglobin / allosteric agent / lipophilic compounds / high altitude hypoxia

引用本文

导出引用
姚菀腾, 尹紫悦, 郭茜文, 李文斌, 王荣. 2,3-二磷酸甘油类似物的合成及功能评价研究进展[J]. 中国药学杂志, 2023, 58(18): 1671-1675 https://doi.org/10.11669/cpj.2023.18.007
YAO Wanteng, YIN Ziyue, GUO Qianwen, LI Wenbin, WANG Rong. Advances in Synthesis and Functional Evaluation of Glycerol 2, 3-diphosphate Analogues[J]. Chinese Pharmaceutical Journal, 2023, 58(18): 1671-1675 https://doi.org/10.11669/cpj.2023.18.007
中图分类号: G353   

参考文献

[1] MICHEL J B, MARTIN-VENTURA J L. Red blood cells and hemoglobin in human atherosclerosis and related arterial diseases[J]. Int J Mol Sci, 2020, 21(18):6756.DOI: 10.3390/ijms21186756.
[2] TELLONE E, BARRECA D, RUSSO A, et al. New role for an old molecule: the 2,3-diphosphoglycerate case[J]. BBA Gen Subj, 2019, 1863(10): 1602-1607.
[3] GELL D A. Structure and function of haemoglobins[J]. Blood Cells Mol Dis, 2018, 70: 13-42. DOI: 10.1016/j.bcmd.2017.10.006.
[4] SEN-GUPTA A. Hemoglobin-based Oxygen Carriers: Current state-of-the-art and novel molecules[J]. Shock, 2019, 52(Suppl 1): 70-83.DOI:10.1097/SHK.0000000000001009.
[5] BREWER G J. 2,3-DPG and erythrocyte oxygen affinity[J]. Annu Rev Med, 1974, 25: 29-38. DOI: 10.1146/annurev.me.25.020174.000333.
[6] PERUTZ M F. Stereochemistry of cooperative effects in haemoglobin[J]. Nature, 1970, 228(5273): 726-739.
[7] ARNONE A. X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin[J]. Nature, 1972, 237(5351): 146-149.
[8] POMPONI M, BERTONATI C, FUGLEI E, et al. 2,3-DPG-Hb complex: a hypothesis for an asymmetric binding[J]. Biophys Chem, 2000, 84(3): 253-260.
[9] SUGIHARA J, IMAMURA T, NAGAFUCHI S, et al. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings[J]. J Clin Investig, 1985, 76(3): 1169-1173.
[10] MARTA M, PATAMIA M, COLELLA A, et al. Anionic binding site and 2,3-DPG effect in bovine hemoglobin[J]. Biochemistry, 1998, 37(40): 14024-14029.
[11] SUN D P, ZOU M, HO N T, et al. Contribution of surface histidyl residues in the alpha-chain to the Bohr effect of human normal adult hemoglobin: roles of global electrostatic effects[J]. Biochemistry, 1997, 36(22): 6663-6673.
[12] HEIDEL K M, DOWD C S. Phosphonate prodrugs: an overview and recent advances[J]. Future Med Chem, 2019, 11(13): 1625-1643.
[13] SHIPPY R R, LIN X, AGABITI S S, et al. Phosphinophosphonates and their tris-pivaloyloxymethyl prodrugs reveal a negatively cooperative butyrophilin activation mechanism[J]. J Med Chem, 2017, 60(6): 2373-2382.
[14] TANAKA Y, IWASAKI M, MURATA-HIRAI K, et al. Anti-tumor activity and immunotherapeutic potential of a bisphosphonate prodrug[J]. Sci Rep, 2017, 7(1): 5987. DOI: 10.1038/s41598-017-05553-0.
[15] HARMON N M, HUANG X, HSIAO C-H C, et al. Incorporation of a FRET pair within a phosphonate diester[J]. Bioorg Chem, 2021, 114:105048. DOI: 10.1016/j.bioorg.2021.105048.
[16] BUNIK V I, ARTIUKHOV A V, KAZANTSEV A V, et al. Administration of phosphonate inhibitors of dehydrogenases of 2-oxoglutarate and 2-oxoadipate to rats elicits target-specific metabolic and physiological responses[J]. Front Chem, 2022, 10:892284. DOI: 10.3389/fchem.2022.892284.
[17] FORD A, MULLINS N D, BALZARINI J, et al. Synthesis and evaluation of prodrugs of α-carboxy nucleoside phosphonates[J]. J Org Chem, 2022, 87(21): 14793-14808.
[18] BALA V, RAO S, LI P, et al. Lipophilic prodrugs of SN38: synthesis and in vitro characterization toward oral chemotherapy[J]. Mol Pharm, 2016, 13(1): 287-294.
[19] LIU J.Synthesis and biological evaluation of amphiphilic small molecule-cytarabine prodrugs[D]. Jinan:Shandong University, 2015.
[20] JIA X, WEBER S, SCHOLS D, et al. Membrane permeable, bioreversibly modified prodrugs of nucleoside diphosphate-γ-phosphonates[J]. J Med Chem, 2020, 63(20): 11990-12007.
[21] LI Y C, ZHAO Y F. Synthesis and properties of n-(diisopropyloxyphosphoryl)cysteine and its derivatives[J]. Phosphorus Sulfur Silicon Relat Elem, 1991, 60(3/4): 233-237.
[22] SHEARAN S J I, ANDREOLI E, TADDEI M. An alternative C-P cross-coupling route for the synthesis of novel V-shaped aryldiphosphonic acids[J]. Beilstein J Org Chem, 2022, 18: 1518-1523. DOI: 10.3762/bjoc.18.160.
[23] KASSA T W, ZHANG N, PALMER A F, et al. Design, synthesis, and activity of 2,3-diphosphoglycerate analogs as allosteric modulators of hemoglobin O2 affinity[J]. Artif Cells Nanomed Biotechnol, 2013, 41(2): 109-115.
[24] LIU H Y. Design, synthesis and activity evaluation of new blood oxygen modulators[D]. Lanzhou:Lanzhou University, 2019.
[25] LENTINI N A, HUANG X, SCHLADETSCH M A, et al. Efficiency of bis-amidate phosphonate prodrugs[J]. Bioorg Med Chem Lett, 2022, 66:128724. DOI: 10.1016/j.bmcl.2022.128724.
[26] COLLINS J A, RUDENSKI A, GIBSON J, et al. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve[J]. Breathe, 2015, 11(3): 194-201.
[27] PEPPLE D J, MARSH D T, MCKOY M G. In vitro effect of dibenzyl trisulfide on the p50 of the oxygen haemoglobin dissociation curve[J]. J Basic Clin Physiol Pharmacol, 2020, 32(3): 279-282.
[28] MCKOY M, ALLEN K, RICHARDS A, et al. Effect of cilostazol on the p50 of the oxygen-hemoglobin dissociation curve[J]. Int J Angiol, 2015, 24(1): 67-70.
[29] MATTHIESEN R, JENSEN O N. Analysis of mass spectrometry data in proteomics[J]. Methods Mol Biol, 2008, 453: 105-122.DOI: 10.1007/978-1-60327-429-6_4.
[30] NIENHAUS K, KNAPP J E, PALLADINO P, et al. Ligand migration and binding in the dimeric hemoglobin of Scapharca inaequivalvis[J]. Biochemistry, 2007, 46(49): 14018-14031.
[31] Ke B B,Xie Y Y,Wang D R, et al. Biological mass spectrometry analysis of heteroproteins in human blood albumin[J]. Chin Pharm J (中国药学杂志),2020,55(2):148-152.
[32] Zhang L Y,Tang K Q, Hu J. Conformational changes of hemoglobin at different pH and alcohol solutions were detected based on electrospray ionization-captured ion mobility spectrometry-time-of-flight mass spectrometry[J]. Chin J Anal Chem (分析化学), 2021, 49(8): 1335-1341.
[33] WOODALL D W, BROWN C J, RAAB S A, et al. Melting of hemoglobin in native solutions as measured by IMS-MS[J]. Anal Chem, 2020, 92(4): 3440-3446.

基金

国家自然科学基金项目资助(82173738);部队拔尖培育项目资助(2021yxky005);全军青年培育项目资助(20QNPY070)

PDF(909 KB)

Accesses

Citation

Detail

段落导航
相关文章

/